IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

FedGraph: Federated Graph Learning
With Intelligent Sampling

Fahao Chen™, Peng Li*, Senior Member, IEEE,

Toshiaki Miyazaki*, Senior Member, IEEE, and Celimuge Wu™, Senior Member, IEEE

Abstract—Federated learning has attracted much research attention due to its privacy protection in distributed machine learning.
However, existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle
graph data that are popular in many applications. Graph Convolutional Network (GCN) has been proposed as one of the most promising
techniques for graph learning, but its federated setting has been seldom explored. In this article, we propose FedGraph for federated
graph learning among multiple computing clients, each of which holds a subgraph. FedGraph provides strong graph learning capability
across clients by addressing two unique challenges. First, traditional GCN training needs feature data sharing among clients, leading to
risk of privacy leakage. FedGraph solves this issue using a novel cross-client convolution operation. The second challenge is high GCN

1775

training overhead incurred by large graph size. We propose an intelligent graph sampling algorithm based on deep reinforcement
learning, which can automatically converge to the optimal sampling policies that balance training speed and accuracy. We implement
FedGraph based on PyTorch and deploy it on a testbed for performance evaluation. The experimental results of four popular datasets
demonstrate that FedGraph significantly outperforms existing work by enabling faster convergence to higher accuracy.

Index Terms—Federated learning, graph learning, graph sampling, reinforcement learning

1 INTRODUCTION

FEDERATED learning has shown great promise in enabling
collaborative machine learning among distributed devi-
ces while preserving their data privacy [1]. There is a grow-
ing amount of research efforts on federated learning [2], [3],
but they study Convolutional Neural Network (CNN) mod-
els that show superior learning accuracy on image and voice
data. However, many applications generate graph data (e.g.,
social graphs and protein structures) consisting of nodes and
edges, and much evidence has shown that CNN cannot effi-
ciently handle graph learning [4], [5]. Graph Convolutional
Network (GCN) [6] has been proposed to deal with graph
learning by a novel graph convolution operation. Different
from CNN’s convolution operation that filters a small set of
neighboring pixels, a graph convolution operation filters the
features of neighboring nodes. Unfortunately, existing work
of federated learning mainly focuses on CNN, leaving GCN
under explored.

Recently, there are several preliminary research efforts
about graph learning on decentralized datasets. Zhou et al.
[7] have studied a vertical federated learning scenario on

e Fahao Chen, Peng Li, and Toshiaki Miyazaki are with the University of
Aizu, Aizuwakamatsu 965-8580, Japan. E-mail: {d8232101, pengli, miyazaki}
@u-aizu.ac.jp.

o Celimuge Wu is with the University of Electro-Communications, Chofu
182-8585, Japan. E-mail: celimuge@uec.ac.jp.

Manuscript received 30 Apr. 2021; revised 24 Sept. 2021; accepted 31 Oct. 2021.
Date of publication 8 Nov. 2021; date of current version 9 Dec. 2021.

This work was supported in part by The Okawa Foundation for Information
and Telecommunications, in part by G-7 Scholarship Foundation, and in part
by JSPS KAKENHI under Grants 21H03424 and 19K20258.

(Corresponding author: Peng Li.)

Recommended for acceptance by J. Zola.

Digital Object Identifier no. 10.1109/TPDS.2021.3125565

graphs, where clients maintain the same nodes but with dif-
ferent features and edge types. Similarly, Mei et al. [8]
assume that graph structural, features and labels belong to
different sources. These works are different from the gen-
eral setting studied in our paper. Some recent works explore
the intersection of graph and federated learning by discus-
sing the effect of Non-LI1.D data distribution in federated
graph learning [9], [10]. However, these works do not con-
sider the inter-graph connections, which is a pervasive phe-
nomenon in the real world [11].

In this paper, we study federated learning on GCN based
on graph data distributed among multiple computing cli-
ents that do not allow direct data sharing due to privacy
protection. Each client has a subgraph with edge connec-
tions to the subgraphs held by others. Every graph node is
associated with some features that contain private informa-
tion. For example, medical records in hospitals can be orga-
nized as graphs, where each graph node represents a record
and its features include personal information (e.g., ages,
genders, and occupations) as well as health conditions (e.g.,
diseases) [11]. It has been widely recognized that these fea-
ture data is privacy-sensitive and they cannot be exposed.
Given some nodes with labels, the goal of graph learning is
to predict the labels of other nodes.

Federated learning on GCN is not a simple extension of
its counterpart on CNN because of two unique challenges.
First, GCN training involves node feature sharing among
clients, leading to the risk of privacy leakage. To exploit
graph structure information, the graph convolution opera-
tion is designed to aggregate feature data of neighboring
nodes. Such an operation would fail if some neighboring
nodes are maintained by other clients, who refuse to expose
their features. A straightforward solution for privacy pro-
tection is to eliminate feature sharing, but it would seriously

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4345-1296
https://orcid.org/0000-0002-4345-1296
https://orcid.org/0000-0002-4345-1296
https://orcid.org/0000-0002-4345-1296
https://orcid.org/0000-0002-4345-1296
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0003-4981-0496
https://orcid.org/0000-0002-7657-2924
https://orcid.org/0000-0002-7657-2924
https://orcid.org/0000-0002-7657-2924
https://orcid.org/0000-0002-7657-2924
https://orcid.org/0000-0002-7657-2924
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0001-6853-5878
mailto:d8232101@u-aizu.ac.jp
mailto:pengli@u-aizu.ac.jp
mailto:miyazaki@u-aizu.ac.jp
mailto:celimuge@uec.ac.jp

1776

decrease training accuracy, which has been confirmed by
our experimental results. The second challenge is the high
training overhead incurred by large graph size [12], [13].
For example, a social network maintained by Facebook con-
tains over 3 billion users, and the corresponding graph data
size may be several hundreds of gigabytes [14]. Since a
GCN model stacks several layers of the same structure with
the original graph, the model size becomes extremely large,
even exceeding the physical memory constraint.

In this paper, we propose FedGraph, a federated graph
learning system that integrates the ideas of federated learn-
ing and GCN to open new opportunities for privacy-preserv-
ing distributed graph learning. FedGraph is especially good
at learning on distributed graphs with complicated connec-
tions, and can converge to a high training accuracy by
addressing the above challenges. For the first challenge
about the dilemma of feature sharing and privacy protection,
a common solution is to use cryptography-based techniques,
e.g., homomorphic encryption [15], [16], to enable computa-
tion over encrypted data. Despite strong security guarantee,
these techniques have high computational overhead, making
them inappropriate choices for FedGraph that pursuits high
training speed. There also exist hardware-based solutions,
e.g., SGX [17], [18], for privacy protection, but security hard-
ware has limited capacity and it cannot handle large graph
data [18]. FedGraph solves the dilemma by designing a
cross-client graph convolution operation, without heavy
cryptographic operations or dedicated hardware. Instead of
directly sharing node features, FedGraph embeds them into
low-dimensional representations before sharing, so that
original features cannot be recovered.

To reduce GCN training overhead, graph sampling has
been widely adopted to randomly select a mini-batch of
nodes for training [12], [19], [20], [21]. GraphSAGE [12] is a
graph sampling method based on node neighboring rela-
tionship. It randomly selects a fixed number of neighbors
when applying the graph convolution operation for each
node. FastGCN [20] has been proposed to improve sam-
pling efficiency by independently selecting nodes for each
graph convolution layer. However, existing work cannot
satisfy the requirements of FedGraph design due to three
weaknesses. First, these sampling methods depend on some
hand-crafted parameters that rely heavily upon the knowl-
edge of domain experts. For example, the performance of
GraphSAGE is determined by the parameter specifying the
number of sampled neighbors, and manual parameter tun-
ing is time-consuming. Second, existing methods ignore the
tradeoff between training speed and training accuracy.
Sampling fewer nodes accelerates training but decreases
accuracy. Third, clients participating in federated graph
learning are heterogeneous in graph size and computational
capability. Applying the same sampling policy for all clients
is far from the optimal solution.

These weaknesses make the sampling algorithm design
challenging in FedGraph. Instead of struggling to improve
existing heuristic designs, we resort to Deep Reinforcement
Learning (DRL) techniques and design an intelligent sam-
pling algorithm that can automatically adjust sampling poli-
cies by jointly considering computation overhead, training
accuracy and client heterogeneity. By carefully examining
various DRL algorithms, we choose the Deep Deterministic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Policy Gradient (DDPG) and cast it to federated graph learn-
ing. The main contributions of this paper are as follows.

1) We propose FedGraph as a novel federated graph
learning system. We formally present the procedures
of local training by clients and global parameter
update by the server. A lightweight cross-client con-
volution operation is proposed to enable feature shar-
ing among clients while avoiding privacy leakage.

2) A DRL-based sampling algorithm is designed for
FedGraph, so that it can automatically find the best
sampling policy that makes a good tradeoff between
training speed and accuracy.

3) We implement a prototype of FedGraph and evalu-
ate it on a testbed. Four popular graph datasets are
used in performance evaluation. The experimental
results show that FedGraph enables at least 2 times
faster convergence to about 10% higher accuracy
than existing work.

The rest of this paper is organized as follows. We review
some necessary background of GCN and federated learning
in Section 2. The FedGraph design is presented in Section 3,
followed by the intelligent sampling policy design in Sec-
tion 4. Section 5 gives experimental results. Related work is
presented in Section 6. Finally, Section 7 concludes this paper.

2 BACKGROUND AND MOTIVATION

In this section, we present some necessary backgrounds of
federated learning and GCN. In addition, we analyze exist-
ing graph sampling approaches as well as their weaknesses,
which motivate FedGraph design in this paper.

2.1 Federated Learning

The goal of federated learning is to train a shared model
among distributed devices while avoiding the exposure of
their training data. A typical federated setting consists of a
number of devices, each of which holds a dataset that can-
not be exposed to others. In addition, there is a parameter
server responsible for synchronizing training results among
devices. Federated learning contains multiple training
rounds. In each training round, devices first download the
latest global model from the parameter server and indepen-
dently conduct training using their local data. Then, they
send updated models or model differences back to the
parameter server. After collecting training results from all
devices, the parameter server integrates them to create a
new global model. During the whole training process, devi-
ces share only models and it is almost impossible to infer
the training data from these models. Due to the protection
for training data, federated learning becomes one of the hot-
test topics in recent years and many important research
efforts have been made to address various challenges [2],
[22], [23], [24]. However, they all focus on CNN models,
and GCN-oriented federated learning is seldom studied.

2.2 Graph Convolutional Network

CNN has achieved great success in learning on euclidean
data, e.g., images and videos. However, a large amount of
data in practice are expressed as graphs consisting of nodes
and edges, which are also called non-euclidean data. Graph

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: FEDGRAPH: FEDERATED GRAPH LEARNING WITH INTELLIGENT SAMPLING

-bgl)-lT

o
P 5

£ T 1) 17
wff -4 wf]0 (A7
N B g I
A0

agm) z
crell

a‘(nH»l)
wh

layer " ; layer [+ 1./

Fig. 1. lllustration of graph convolution operation.

Convolutional Network (GCN) [6] has been proposed as
one of the most promising techniques for graph learning.
By stacking multiple graph convolutional layers, GCN is
able to exploit information of graph structure and node/
edge features for node/edge classification problems in vari-
ous applications. Specifically, we consider an undirected
graph defined as G = (V, E), where sets V' and FE include
nodes and edges, respectively. The corresponding graph
adjacency matrix is denoted by A. Each node v € V' is associ-
ated with a feature vector z(v). A GCN contains L convolu-
tional layers, each of which has the same structure as the
original graph G. In the [th layer, each node v is represented
by a vector A (v), which is called node embeddlng The first
layer is the input graph and we have h(V(v) = z(v). As
shown in Fig. 1, the graph convolution operation aggregates
embeddings of neighboring nodes, transfers the results into
low-dimensional representations, and finally feeds them to
an activation function o(-), e.g., ReLU, to generate node
embeddings of the next layer. Formally, the propagation
rule of GCN can be defined as follows:

=QHYW®, g

Zl+l _ O_(z(lJrl))7 (1)

where H() mcludes all node embeddings in the Ith layer,
and Q = D3 AD3. For the matrix D, we have D;; = Z Ajj
and A= A+ I, where I 1s an identity matrix. The feature
weights included in W) are trainable parameters. Given
some nodes with labels, we can train the feature weight
matrix W using gradient descent algorithms. The trained
parameters can be used to classify the nodes without labels.

2.3 Graph Sampling

In many applications, graphs are very large and the corre-
sponding GCN training has high computational overhead.
Graph sampling has been proposed to reduce the sizes of
graphs used for GCN training, and its existing work can be
classified into two categories. One is node-wise neighbor-
sampling that iteratively samples a fixed number of neighbors

i H? i

mini-batch

[oNeNe)
[XXX)

(a) Node-wise neighbor-sampling (b) Layer-wise importance-sampling
Fig. 2. An illustration of different sampling approaches. The sampled
nodes are marked in color (dark, red, and blue). The dashed arrows
denote edge connections in the original graph. The solid arrows denote
the edges preserved by sampled nodes.

1777

‘Client 1 - -~ - h

(Gh)
. Sy, AU
{Client 2 —_—) W —

(@) ; f—]

’ Wy
| W ‘

~ . ’ ;
Cl:ent YIS TAIN. T Parameter Server
b Layer | Layer 11

Fig. 3. The FedGraph architecture. Each client i maintains a local graph
G;. During the training, nodes in the mini-batch (nodes in red) aggregate
neighbors’ embeddings to generate the next layer's embeddings,
denoted by red arrows. When training completes, each client i uploads
its local model weights W to the parameter server. Finally, the parameter
server aggregates all local model weights to the updated global model 1/
and sends it back to all clients.

for each node. As shown in Fig. 2a, given some nodes in the
(I 4 1)th layer, we randomly select a subset of their neighbors
as the /th layer. Such a sampling guarantees that aggregation
of node embeddings always happens among neighboring
nodes. A representative work of node-wise neighbor-sam-
pling is GraphSAGE [12]. However, the number of sampled
nodes may exponentially increase as more layers are con-
structed. In addition, Huang et al. [25] have pointed out that it
incurs redundancy of embedding calculation at some nodes,
e.g., the red nodes in Fig. 2a, which are the shared neighbors
of other nodes. Several recent approaches, e.g., VR-GCN [19]
and Cluster-GCN [26], have been proposed to improve the
performance of node-wise neighbor-sampling, but they can-
not fundamentally address this weakness.

The other kind of approaches is called layer-wise impor-
tance-sampling. Its basic idea is to independently sample a
fixed number of nodes for each GCN layer based on a sam-
pling probability, which is calculated based on node degrees.
FastGCN [20] is a typical approach of layer-wise importance-
sampling. However, since nodes of different layers are sam-
pled independently, some sampled nodes may have no con-
nections with the ones in the previous layer, like the blue-
marked node shown in Fig. 2b. The embeddings of some
unlinked nodes may be lost during graph convolution opera-
tions, which would deteriorate the training performance.

The strengths and weaknesses of both sampling
approaches motivate us to design a new sampling policy that
can well control the computation overhead while keeping
neighboring relations during sampling.

3 FEDGRAPH DESIGN

We consider a typical setting of federated graph learning,
which consists of a set C of computing clients that conduct
local training tasks, and a server responsible for global
parameter update, as shown in Fig. 3. Computing clients
and the server may locate at different locations and they are
connected by wide-area networks. Each client ¢ € C' main-
tains a graph G;(V;, E;), where each node v € V; is associated
with a feature vector z(v) that cannot be exposed to other
clients. A subset V! C V; of nodes have labels denoted by
{y(v)|v € V/a*!}, which can be used as training data. The
edge set E; contains the internal edges among nodes in V;,
as well as the external ones connecting to nodes held by

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

1778

Parameter Server \ o Client

Global model 'l(
Sampling po A

mmunicatic L r‘"-

Module T

Global medel W
Training time 5| Sampling policy P;

GCN Training
Module

Local model W)

y €

Fig. 4. System design.

other clients. Each client is aware of the existence of neigh-
boring nodes maintained by others but cannot directly
access their feature vectors.

We assume that computing clients and the parameter
server are honest-but-curious, i.e., they honestly follow the
federated learning procedures but want to learn feature
information held by others. This is a typical threat model
that has been widely used by current federated learning
research [15], [27], [28]. Some other more serious threat
models are discussed as follows. Some malicious clients
can tamper with the training by modifying model param-
eters sent to the parameter server. To deal with this
threat, we can use Trusted Execution Environment (TEE)
for local training. TEE is commonly available on modern
CPUs. It enables an isolated execution environment
guaranteed by hardware, and adversaries cannot access
data and codes in TEE. Besides, malicious parameter
servers can modify global model parameters to compro-
mise federated learning. We can use secure multi-party
computation (MPC) or homomorphic encryption (HE) to
protect the model aggregation. Besides, TEE can be also
used to protect global model aggregation at the parame-
ter server.

Our system design is shown in Fig. 4. We customize the
parameter server and clients by adding new modules to
implement intelligent sampling. The parameter server con-
tains three main modules. The DDPG-based sampling algo-
rithm generates sampling policies for all clients. A model
aggregator collects local feature weights trained by clients
and aggregates them to generate new global feature weights
for next-round training. In addition, a communication mod-
ule is designed for message exchanges between the parame-
ter server and clients. This communication module is
realized by gRPC APIs, which are based on TCP communi-
cation protocol. Each client has a module of GCN construc-
tion, responsible for creating a GCN model according to
sampling policy. A GCN training module is designed to run
the training algorithm.

In FedGraph, in order to predict y(v) of unlabeled nodes,
clients collaboratively train global feature weights . There
are multiple training rounds. In each round, clients down-
load the latest feature weights from the server and construct
local GCNs to train these weights. Due to the existence of
external edge connections, local GCN training involves
embedding sharing among clients. After that, they send
updated feature weights to the server, which then creates
new global feature weights that will be used for the next-
round training. Although FedGraph shares a similar pro-
cess with traditional federated learning, it has unique proce-
dures of local training and global parameter update, which
are presented as follows.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

3.1 Local GCN Training by Clients

The local GCN training procedure of each client : € C' is
described in the Algorithm 1. At the beginning of each
round, client i downloads the latest feature weights W as
well as a graph sampling policy P; from the server. The local
feature weights are initialized as W; = W. Then, this client
launches multiple training iterations to update feature
weights based on local graph data. Specifically, each train-
ing iteration consists of the following two main steps.

Algorithm 1. Local Training Procedure of Client ¢ € C

1: for each training round ¢ do

2: Download the latest feature weights W and a sampling
policy P; from the parameter server;

3: Initialize the local feature weights as W; = w;

4: for each iteration do

5. Constructa GCN G; = {V VEL)} =
ModelConstruct(G;, P;)
6: foreachlayer! =1, 2 ,L—1do
7 for each node v € V do
8: if | = 1 then
9:
1+1 Z Q (v, 0) hgz WW (1))
ueV;
10: elseif [> 1then
11:
l+1 l wd
Q (v,)" (W)W +
ot N 3)
> Z Q" (w.u)hf ()W
JEC uev;
12: end if
13: Generate the embeddings of the (I + 1) — ¢h layer:
() = o (A" (0); @
14: end for
15: end for
16: Calculate the loss according to the function:
Z loss(y (v)))]
‘ i 1VEV
17: Update the local feature weight:
W; — W, —eVL (6)

18: end for
19: Submit updated feature weights W; to the server;
20: end for

3.1.1 GCN Construction

We construct a GCN G; of L layers, using the function Mod-
elConstruct() that samples a subset of nodes according to the
policy P;. The basic idea is to start by randomly selecting a
set of nodes with labels, which is also referred to as a mini-
batch. For each node in the mini-batch, we then iteratively
aggregate the embeddings of a sampled subset of neighbors
at most L — 1 hops away.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: FEDGRAPH: FEDERATED GRAPH LEARNING WITH INTELLIGENT SAMPLING

The pseudo codes of ModelConstrut() are shown in Algo-
rithm 2. Specifically, a sampling policy can be expressed by
= {k, pl , p<2) .. pr 1)}, where «; denotes the mini-
batch size, and {pl , pE), . ,pELil) } are neighbor sampling
probabilities of L — 1 layers, respectively. As shown in line
1, we sample «; labeled nodes as the mini-batch and they
compose the final Lth layer. Then, we iteratively construct
other GCN layers in a backward direction. For each node v
in the (I + 1)th layer, we randomly select a subset NN, 0) of
its neighbors into the /th layer with a probability p, .
addition, we create a matrix @); D to replace @ in (7), where
V;i(v) denotes the set of nelghbors of node v in the original
graph G;. The matrix Q describes the updated adjacent
relation after sampling, and it will be used for feature aggre-
gation later. All sampled nodes in the I/th layer are main-
tained in set V , as shown in the final line.

Algorithm 2. The Pseudocodes of ModelConstruct()

1: Randomly select «; labeled nodes as a mrm—batch and
include them into the Lth layer, i.e., V
: foreachlayerl=L—-1,...,2,1do
for each node v € V (+1) do
Sample a subset N, /o (v 2 of neighbors according to a
selection probablhty D; b, ~
5: Update the adjacent matrix Q as follows.

- en

~ |V ‘ U, U iquN-(l)v:
G0 (v,) = § W0 Q()s i (v); @
07 otherwise;
6: end for
7: V(-l) =U N;;(l)(v)}
8: end for !

The GCN construction combines the strength of node-
wise sampling and layer-wise sampling. These sampling
probabilities are independent, which offers opportunities
for fine-grained sampling over layers, like layer-wise sam-
pling. By carefully setting these probabilities, we can avoid
the high computational cost incurred by the recursive explo-
sive expansion of the neighborhood. Meanwhile, since the
sampling process is based on neighborhood relation, which
is similar to node-wise sampling, we can avoid sampling
nodes without connections.

3.1.2 GCN Training

After constructing a GCN model, we continue to train this
GCN based on gradient descent. The cross-client graph con-
volution operation is described in lines 7-13 of Algorithm 1.
Specifically, clients aggregate embeddings of only internal
neighbors when they process the first GCN layer, as shown
in Eq. (2). From the second layer, we enable clients to aggre-
gate both internal neighbors and external ones, which is
shown in Eq. (3). Such a design can prevent the leakage of
local origin features while enabling information sharing.
We will give the security analysis in Section 3.3.

After aggregation, a nonlinear transforrnatlon is applied
to generate the node embedding h; +1)() of the next layer,
as shown in Eq. (4). With the ob]ectlve of minimizing a loss
function defined in Eq. (5), we compute the gradients and
update feature weights in Eq. (6), where ¢ is the learning

1779

rate. Finally, client ¢ submits the updated feature weights
(or their differences from downloaded ones) to the parame-
ter server.

3.2 Global Parameter Update by the Server

The procedure of global weight update by the parameter
server is shown in Algorithm 3. The server starts by initial-
izing random feature weights W and sampling policies
{P1, P3,... P}, and then sends them to clients, respec-
tively. In each of the following training rounds, it collects
updated local feature weights from all clients, followed by
two main tasks. First, it creates global feature weights by
aggregating local weights as shown in Eq. (8), where «;
denotes the mini-batch size, i.e., the number of labeled
nodes, at client ¢ in the current training round. The second
task is to update sampling policies for clients using function
GenSampling(), whose details will be given in the next sec-
tion. The design of GenSampling() is one of the most impor-
tant contributions of this paper, and it relies on the deep
reinforcement learning technique to balance computational
overhead and model accuracy. Finally, the server sends
new global feature weights and sampling policies to clients
to start the next round of training.

Algorithm 3. Global Weight Update of Parameter Server

1: Initialize random feature weights W and sampling policies
{P, Ps,... Py }, and send them to clients, respectively;

2: for each training round ¢ do

Collect feature weights {W, Wy, W, .., W¢}, from all clients;

4: Create global feature weights:

@

Ki

W=)») ——"—
ieC EieC ki

Wi; ®

5: Update the sampling policy {P,Ps,...,
GenSampling(W, W, W, .. W)

6: Send global feature weights W and sampling policy F; to
every clienti € C;

7: end for

P} =

3.3 Security Analysis
To show how our proposed Algorithm 1 protects feature
data, we consider two clients ¢ and j, who need to share
node embeddings during training, without loss of general-
ity. Suppose client i aggregates embeddings from client j
and wants to infer the original node features hg). Note that
hil) is a matrix containing features of all nodes held by client
jrie, BV (v) = z;(v),v € V.
We let V/ denote the chent i’s neighboring nodes at client
J. According to Algorithm 1, client ¢ can get information of
P wvHw® nPwvhiw® P (viw). Then, client i
can guess node embeddings {hJ,(.Q), ,hj,(.L) } by approximat-
;' using local VV;I), which is possible when
they just synchronize global feature weights from the server.
However, it would be difficult for client i to further infer
h<1 (V‘) because h (Q(l W W1) and client 7 has no
1nformat10n about Q), ie., the ad]acent matrlx in Clrent J
after sampling. Furthermore the guess of {h . h)} can
hardly achieve high accuracy due to the dimension reductlon

ing remote w

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

1780

of embeddings in higher layers. Given that original features
of neighboring nodes can be protected, it would be impossi-
ble to get the features of internal nodes at client j. Therefore,
we can conclude that FedGraph can protect the node features
while enabling information sharing during federated graph
learning.

4 INTELLIGENT GRAPH SAMPLING BASED ON DRL

Sampling policies {Pi,P,,... P} determine how many
nodes are involved in GCN training, and they affect both
computational overhead and training accuracy. By sampling
fewer nodes, we can accelerate the training process with
reduced computational overhead, while lowering training
accuracy. On the other hand, with more sampled nodes, we
can better approximate the original GCN to achieve higher
training accuracy, but incurs a high computational cost.
Therefore, it is significant to design sampling policies to make
a tradeoff, however, which has been ignored by existing
work. Meanwhile, sampling policy design is difficult due to a
large optimization space, and manual tuning hardly works in
practice. We desire automatic algorithms, with minimum
human involvement, to generate good sampling policies.

By carefully examining sampling policies, we find that
their influence on the learning performance, in terms of
training speed and accuracy, cannot be described using pre-
cise closed-form expressions. Instead of struggling with
heuristic algorithm design, we resort to Deep Reinforce-
ment Learning (DRL) that can automatically approximate a
good solution. The idea of DRL can be implemented in vari-
ous ways, generating a thriving family of algorithms for dif-
ferent application scenarios with different performance. By
carefully comparing candidate DRL algorithms, we choose
to use Deep Deterministic Policy Gradient (DDPG) algo-
rithm [29], which can efficiently handle the high-dimen-
sional and continuous action space of our problem. DDPG
combines Deep Q-Networks and actor-critic approach and
thus enjoys their benefits.

4.1 DDPG-Based Problem Formulation
To apply DDPG, we first formulate our problem as a Mar-
kov decision process as follows.

State Space. We define the system state of the training
round ¢ as the observed feature weights at the beginning of
this round, which can be represented by s[t] = {W[t],
Wi[t], Walt], ..., W e [t]}. Note that W[t] is the global feature
weights and W;[t] denotes the local feature weights of client
i € C. The whole action space is denoted by S. Since the
state space is huge, we leverage the principal component
analysis (PCA) [30] to project the high-dimensional space
onto a lower-dimensional space while keeping the distribu-
tion information as complete as possible.

Action Space. At the beginning of round ¢, the parameter
server needs to decide graph sampling policies for all clients.
The action at] of each round ¢ is therefore defined as the cor-
responding sampling policies, ie., a[t] = {P[t], P[t],...,
Pic)[t]}. The action space is denoted by A.

Reward. Since both learning speed and accuracy are con-
sidered as performance metrics, the reward should be
defined to reflect them. We use the completion time of each
training round ¢, which is denoted by §[t], to evaluate the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

training speed. The server can easily obtain §[t] by measuring
the time consumption of collecting local training results from
all clients. The training accuracy A[t] is calculated based on a
testing set at the parameter server. We consider a typical fed-
erated setting, where the parameter server is usually the task
publisher that holds a testing set. Each client has its own
training set and validation set, which cannot be exposed due
to privacy concerns. With the information of §[t] and \[t], we
define the reward of each round ¢ as follows,

rlt] = QI o (5[] — B), (9)

where A is the target accuracy. The constants (), « and can
be adjusted to express different preferences on learning
speed and accuracy. The reward contains two parts. The
first part evaluates accuracy improvement. We notice that
Alt] shows nonlinear improvements as the learning pro-
ceeds. It can be quickly improved in the first few training
rounds, but the improvement becomes smaller later. In
order to make the reward unbiased, we use an exponential
function here. The second part evaluates the completion
time of each training round in the negative form, to encour-
age fast training. In practice, the completion time of a client
is affected by many factors, i.e., computational hardware or
network latency. We alleviate the impact of these factors by
adding a constant £ in (9), so that we can better evaluate the
influence of different sampling policies. In our experiments,
we control the time penalty, i.e., «(8[t] — B), close to 1, as
referred to [24], which can be easily achieved by profiling.
Learning Policy and Objective. We define the DRL learning
policy in our problem as 7y : S — A, which is parameterized
by 6. More precisely, given a state s[t], the algorithm outputs a
deterministic action a;. The objective of our DRL-based sam-
pling algorithm is to maximize the expected cumulative dis-
counted reward from the starting state, which is defined as

J(60) = E[R[t]|S[t] = s[t]],

where R[t] = >"7° ¥"r[t + k] is the cumulative discounted
reward function.

The action-value function ¢,(s[t],a[t]) is defined to
describe the expected cumulative discounted reward after
executing action alt] in state s[t] based on policy 7, ie.,
ar(slt]. alf]) = E[RIH)St] = slt], Alt] = mo(slt]]. Typically,
we use neural networks to approximate the policy function
7y and action-value function ¢.

4.2 Sampling Based on DDPG

The DDPG-based sampling algorithm design is illustrated
in Fig. 5. We design an actor network p(s|0,) to predict
deterministic actions, and a critic network ¢(s, a|6,) to esti-
mate the action-value function g¢,(s,a). Meanwhile, we
maintain copies of the actor network and critic network,
denoted by /i(s]6,) and §(s,al,), which are also referred to
as target networks. They can be used to update the original
actor and critic networks.

Similar to Deep Q-Networks, we maintain a replay buffer
of finite size to store historical transitions defined as
(s[t], alt], r[t], s[t + 1]). We update the actor and critic net-
works by sampling a mini-batch of transitions from the
reply buffer. When the buffer is full, the oldest samples are
discarded. We then formally introduce the DRL-based

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: FEDGRAPH: FEDERATED GRAPH LEARNING WITH INTELLIGENT SAMPLING

a; = {Pi[t], P[t],..., Pgt]}

! [Raplay butfer

(8iyaiy 70, 8i41)

[s .
: [ModelConstruct]

§ 8

' Ve
reward : ry
state : s
i y

s = {Wt,, Wi[t], Walt],..., Wig[t]}
Fig. 5. lllustration of DDPG-based sampling.
sampling algorithm, i.e., implementation details of function

GenSampling(), and explain how it learns the optimal sam-
pling scheme.

Algorithm 4. Sampling Algorithm Based on DRL

1: Randomly initialize the actor 1(s|6,) and critic (s, a|6,)
with parameters 6, and 6,;
: Initialize the target networks ji(s|0,) and §(s, a|,) with
parameters 8, < 6, and 6, < 6,;
: Initialize the initial state s[0] = {W[0], W1 [0], ..., W¢y[0]};
: Reduce the dimension of initial state: s'[0] = PCA(s[0]);
: Initialize the exploration noise A and replay buffer;
Generate sampling policies represented by
al0] = u(s'[0]|6,) + Ay and send them to clients;
: forepisode=1,2,...,Z do
fort=1,2,...,7 do
Observer the state s[t] and reward r[t — 1];
s'[t] = PCA(s[t]);
Store the transition (s [t — 1], a[t — 1], [t — 1], s [t]) into
the replay buffer;
12: Randomly select a mini-batch of K transitions from the
replay buffer;
13: Update the critic and actor networks by (11) and (12);
14: Update the target networks by soft update method:

N

o U W

[
=20 2N

é;t = ¢9;4 + (1 - ¢)é/u (13)

éq = 90, + (1- ¢)éq§ (14)

15: Generate sampling policies a[t] = (s [t]|6,) + As;
16: end for
17: end for

The pseudo codes of the DDPG-based algorithm are
shown in Algorithm 4. We initialize four networks as well as
the system state in lines 1-5. At the beginning of training
round ¢, the server observes the current state information s|t]
in the form of feature weights of all clients, and the reward
r[t — 1] defined in (9), as shown in line 9. Then, we reduce the
dimension of s[t] to get s'[t] using the PCA method [30], and
then store the transition (s'[t — 1], a[t — 1], [t — 1], s'[t]) into
the replay buffer. After that, we randomly select a mini-batch
of K transitions to update the critic network by minimizing
the loss function

1 &
£ =23 (" = (s [t — Vs alt — 1]/6,))°, (10)
k=1

1781
TABLE 1
Graph Data Statistics

Dataset Nodes Edges Features Classes
Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,228 3,703 6
PubMed 19,717 88,651 500 3
Reddit 232,965 114,848,857 602 41

where ¢ = r[ty, — 1] + yq(s'[ti], it(s'[t1]|6,.)|0,) is the tar-
get action value. The parameters of the critic network are
updated by

0,[t] = 6,[t —1] —n,VL, (11)
where 7, is the learning rate. Then we update the actor net-
work as follows:

eu[t] = 0u[t - 1}_

. ‘ _ (12)
N { o 2 Vaa(s[il, @), (5[] aciogp |

where 7, is the learning rate of the actor network. The
parameters of two target networks are updated in line 14,
where ¢ < 1. Finally, we obtain the action a[t] representing
sampling policies based on updated networks.

5 PERFORMANCE EVALUATION

5.1 Experimental Settings

We implement FedGraph using PyTorch and Deep Graph
Library (DGL) [31], a Python package dedicated to deep
learning on graphs. We deploy FedGraph on 20 computing
clients with Intel i7-10700 CPU, 32 GB memory, and Geforce
RTX 2080 GPU. We consider 4 popular graph datasets: Cora,
Citeseer, PubMed, and Reddit, which have been widely used
for GCN studies [12], [19], [20], [21], [25], [26]. Some statistic
information of these datasets is summarized in Table 1. Since
some graphs, e.g., Cora and Citeseer, are with limited sizes,
we synthesize large graphs based on these datasets using the
following method. Given a dataset in Table 1, each client ¢
randomly selects a proportion & of nodes as its local graph
data, and {&1,&,. .., } belongs to a normal distribution
with a mean of 0.8. It is possible that generated local graphs
overlap on some nodes, especially for small graph datasets,
like Cora and Citeseer. For large graphs, we carefully control
the local graph generation to avoid overlapping. Even some
nodes overlap in the synthesized datasets, we treat them as
different nodes and there is no influence to training perfor-
mance. A similar graph synthesis method has been adopted
by [32]. For the local dataset, we randomly choose a set of
nodes to generate a training set, a validation set, and a test
set. The edge connections across clients are maintained
according to the original graph. For local graph learning,
each client constructs a 3-layer GCN, including an input
layer and two convolutional layers. We set 16 hidden units,
50% dropout rate, 0.01 learning rate for Cora, Citeseer, and
PubMed. For Reddit, there are 128 hidden units, the dropout
rate is 20%, and the learning rate is 0.0001. We set the batch
size as 256 for Cora, Citeseer, and Reddit, 1,024 for PubMed
[20]. We use ADAM optimizer for local GCN training. For

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

1782
(a) Cora 80 (b) Citeseer
200
£ £ 60
2150 2
< € 40
2 100 2
= 5 s 20
3 3
E E o
> >
(&) 0 o
-20
0 100 200 300 0 100 200 300
Episode Episode
(c) PubMed (d) Reddit
100 40
= =
E] 5 20
E &
o 50 s 0
= =
kS T -20
> >
E 5 £ 40
(@] (@]
-60
0 100 200 300 0 100 200
Episode Episode

Fig. 6. Cumulative discounted returns of FedGraph.

the reward function (9), we set the base of exponential func-
tion, i.e., (), as 128 in our experiments. Since FedGraph relies
on the exponential property of reward function, the base has
little influence on FedGraph. Moreover, the difference of
training accuracy A[t] and target accuracy A affects the reward
in each round ¢. For each dataset, we choose the best accuracy
reported by existing work. Even we have no knowledge of the
best accuracy, we can make an estimation according to experi-
ences. Since FedGraph only relies on the exponential property
of reward function, such estimation has little influence to Fed-
Graph. Both constants « and g aim to balance accuracy
improvement and time cost. In our experiments, we control
the time penalty «(8[t] —) close to 1, similar to the settings in
[24]. For comparison, we extend the following three graph
sampling schemes for federated graph learning.

1) Full-batch: We do not conduct graph sampling and
use the original graph to construct GCN.

2) GraphSAGE: A typical node-wise neighbor-sampling
method that iteratively samples a fixed number of
neighbors. The neighbor-sampling sizes of two con-
volutional layers are set as 25 and 10, respectively,
which are the same with the settings in [12], [20], [26].

3) FastGCN: A typical layer-wise importance-sampling
method that independently samples a fixed number
of nodes, which is also called layer size, for each
layer. The layer size of Cora and Citeseer is set to
256, and that of Reddit and PubMed is 8,192, which
are the settings advocated by [21].

In the DRL-based sampling algorithm of FedGraph, both
actor-networks and critic-networks have 2 hidden layers of
512 and 256 units. We compress feature weights into 20
dimensions by using the tool sklearn.decomposition.
PCA [33].

5.2 Experimental Results

Convergence of DRL-Based Sampling. We let FedGraph train
300 episodes and show cumulative returns under four data-
sets in Fig. 6. We set the target accuracy as 90.16% for Cora,
78.7% for PubMed, 87.9% for Citeseer, and 96.27% for
Reddit. We observe that cumulative discounted returns of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

FedGraph ===-= FastGCN GraphSAGE Full-batch
(a) Cora 08 (b) Citeseer
0.9 '

o) &

© 0.8 © 0.7

3 =l

807 3

g 0. S 06

[=)] (=]

£06 £

3 305

~ 0.5 [

0 5 10 15 0 5 10 15
Time (s) Time (s)
(c) PubMed (d) Reddit
0.8 1

> >

8 8

307 308

[} [}

© ©

2 2.,

20.6 o

= [

0 0 500 1000

Time (s) Time (s)

Fig. 7. Accuracy convergence of different sampling schemes with 20 cli-
ents. Note that, FastGCN completes the training with less time as it sam-
ples fewer nodes for training. However, it has poor performances in all
datasets.

four datasets can converge to stable values in less than
100 episodes, Especially, the biggest dataset, Reddit, almost
converges after 50 episodes, as shown in Fig. 6d. These facts
demonstrate good convergence of our proposed DRL-based
sampling scheme.

Results of Training Accuracy. The accuracy convergence of
different sampling schemes is shown in Fig. 7, where we can
see that FedGraph can converge at a faster speed and achieve
higher accuracy. For a fair comparison, we use physical time,
instead of the number of training rounds, as the metric to
evaluate training speeds of different schemes. That is
because clients have graphs of different sizes, and they con-
sume different time costs in each training round. Specifically,
FedGraph achieves 75% accuracy at about 5 seconds on Cora,
but the other three algorithms take more than 10 seconds to
achieve similar accuracy. In PubMed, FedGraph takes about
15 seconds to achieve 73% accuracy, but GraphSAGE and
full-batch scheme need more than 2 times as long to con-
verge. In the largest datasets Reddit, FedGraph’s advantages
are more obvious, as shown in Fig. 7d. We summarize the
reasons as follows. GraphSAGE has a serious problem of
computation redundancy, which consumes more time for
training. FastGCN can not get sufficient embedding informa-
tion from other clients because some sampled nodes have no
edge connections. Full-batch scheme needs to calculate the
embeddings of all nodes, which incurs high computational
cost especially on larger graphs PubMed and Reddit. Fed-
Graph has well addressed the weaknesses of the above meth-
ods and thus achieves higher performance. Note that the
total number of training rounds is fixed to 300 and FastGCN
completes training earlier because it samples fewer nodes for
training. Moreover, to evaluate the scalability of FedGraph,
we enlarge the experimental scale to 50 clients and show cor-
responding results in Fig. 8. We can find that FedGraph still
outperforms other sampling schemes.

Influence of Graph Heterogeneity. We study the influence of
graph heterogeneity by changing the variance of . We

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: FEDGRAPH: FEDERATED GRAPH LEARNING WITH INTELLIGENT SAMPLING

——FedGraph =---- FastGCN GraphSAGE Full-batch
(a) Cora 0.8 (b) Citeseer

> 0.9 >

0.8 ® 0.7
3 3
3 3

807 8 06
o6 g
1] 1]

0.5
205 2

0 5 10 15 0
Time (s) Time (s)
(c) PubMed (d) Reddit

0.8 1
> >
3 3

307 308
(8] o
© ©
2 =4

%06 7 08
(0] (0]
— —

0 0 500 1000
Time (s)

1783

FedGraph FedGraph_allShare FedGraph_nonShare
(a) Cora (b) Citeseer
0.9 0.9
08 ;]
(%) Q
© o
307 207
o (S
I &
0.6 0.6
= =
305 305
[—
0.4 0.4
0 5 10 15 0 5 10 15
Time (s) Time (s)
(c) PubMed (d) Reddit
0.9 1
508 508
o o
307 =
Q Q
g g o6
> 0.6 =)
£ <
8os g o4
= =
0.4 0.2
0 10 20 30 0 500 1000
Time (s) Time (s)

Fig. 8. Accuracy convergence of different sampling schemes with 50
clients.

consider three heterogeneity levels, and the corresponding
variances are 0.1 (low), 0.5 (middle) and 1 (high), respec-
tively. For a better understanding, we calculate the ratio
between the smallest graph size and the largest size, and
the results are about 0.2, 0.4 and 0.6, respectively. We mea-
sure the training time to converge to a target accuracy that
can be achieved by most of sampling schemes. In PubMed,
we set target accuracy to 72%, but FastGCN can converge to
68.6% only. As shown in Fig. 9, the training time of all sam-
pling schemes increases as graphs become more heteroge-
neous under all datasets. However, FedGraph has better
control on the time growth because its DRL-based sampling
jointly considers the training speed and accuracy.

Effect of Cross-Client Embedding Sharing. FedGraph uses the
cross-client graph convolution operation to enable embed-
ding sharing between clients while hiding local features dur-
ing local GCN training. For comparison, we consider two
alternative methods, one (referred to as FedGraph_allShare)

—+—FedGraph --»--FastGCN GraphSAGE - e -Full-batch

(a) Cora (75%) (b) Citeseer (68%)
Y e
";/,' ,,r y
10 ,;’: 10 e
@ o @ e
° ° ot
£ £ {;/
[o = =
5 - 5 > e
y 2.5
0
low middle high low middle high

Heterogeneity level
(c) PubMed (72%)

Heterogeneity level
(d) Reddit (85%)

40

’
30 . S
,/ ’ 'o'
2 S s
o 20 o 686% s
%
P ’ .—.—“, ok
0] cle”
y.>"
0
low middle high low middle high

Heterogeneity level Heterogeneity level

Fig. 9. The convergence time under different levels of graph heterogeneity.

Fig. 10. Convergence of FedGraph and FedGraph_nonShare. Fed-
Graph_nonShare completes the training with less time as it ignores lots
of connections in the local training. However, it has a poor convergence.

is to share embeddings from the first layer to maximize
the information sharing, and the other (referred to as Fed-
Graph_nonShare) is to discard cross-client sharing to sim-
plify the design. We show the accuracy convergence of
these three designs in Fig. 10. The total number of training
rounds is set to 300. We can find that the curve of Fed-
Graph is close to that of FedGraph_allShare, which dem-
onstrates that FedGraph has little information loss even
though it eliminates the embedding sharing in the first
layer. It is because that the high-layer embedding contains
information about the original features. Hence, FedGraph
can efficiently learn from cross-clients embedding sharing
without the original feature exchanging. Simultaneously,
FedGraph significantly outperforms FedGraph_nonShare
under all datasets. In Cora and Citeseer, cross-client con-
volution operations can increase training accuracy by
about 10%. In PubMed, two designs have similar final
accuracy, but FedGraph enables quick convergence. Red-
dit is more sensitive to cross-client embedding sharing
than other datasets, and FedGraph_nonShare converges to
an accuracy of about 70%, while FedGraph can converge
to about 90%. That is because Reddit has rich edge connec-
tions as shown in Table 1, and ignoring cross-client edges
would seriously break the whole graph structure. Note
that FedGraph_nonShare completes 300-round training
earlier because it eliminates embedding sharing.

The Impact of GCN Depth. We study the impact of GCN
depth by changing the number of graph convolutional
layers. The results are shown in Fig. 11. We can see that for
all datasets, there is obvious growth of time complexity as
we increase the number of layers from 2 to 4. Meanwhile,
the accuracy has little changes. In particular, the accuracy of
Citeseer decreases as the growth of GCN layers because of
the over-smoothing issue [6], [34], [35].

The Impact of Non-1ID Data. The effectiveness of FedGraph
on handling non-IID data is demonstrated in Fig. 12. We gen-
erate the non-iid data distribution by selecting a subset of
node types for each local graph. The experimental results
show that FedGraph still outperforms other schemes.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

1784

B Accuracy

B Training time

s Accuracy

B Training time

o
©

°
3

Accuracy
Accuracy
Training time

°
<

2 3 4
The Number of Convolutional Layers

(b) Citeseer

2 3 4
The Number of Convolutional Layers

(a) Cora

B Accuracy EEE Training time

s Accuracy WM Training time

Accuracy
Training time
Accuracy
Training time

2 3 4
The Number of Convolutional Layers

(d) Reddit

2 3 4
The Number of Convolutional Layers
(c) Pubmed

Fig. 11. Training accuracy and time under different GCN depths.

6 RELATED WORK

6.1 Federated Learning

Federated learning has attracted great research attention
due to its great promise in enabling privacy-preserving dis-
tributed machine learning [3], [22]. Zhao et al. [2] have dem-
onstrated the impact of non-IID data in federated learning
with mathematical and proposed an approach that sends a
set of uniform distribution data to each client to reduce the
effect of non-IID data.

Recently, several works study GNNs under different fed-
erated settings from the one in this paper. Suzumura et al.,
[36] develop a federated learning platform to detect finan-
cial crime activities across multiple financial institutions.
They extract global graph information to euclidean data by
graph analytic methods instead of graph neural networks.
Besides, they assume the global graph belongs to all clients.
In contrast, we study GCNs on non-euclidean data, and
each client owns a local graph.

Jiang et al., [37] propose a novel distributed surveillance
system based on GNN and federated learning. There are
two critical differences between this work and our paper.
First, they consider a cross-device federated setting, involv-
ing a large number of cameras with limited computation
and communication capability. In contrast, we study a
cross-silo federated setting, which typically involves a small
number of clients. Second, they aim to protect the trained
model. However, we explore inter-client connections and
protect node features.

Mei et al., [8] study federated privacy-preserving graph
neural networks with a vertical federated setting, i.e., assume
that graph structural, features, and labels belong to different
sources. However, we consider a horizontal federated set-
ting, i.e., each local client maintains a complete graph dataset
with its own graph structure, node features, and labels.

6.2 Graph Convolutional Networks

Due to its excellent performance, GCN has been widely
used in many graph learning applications, like node classifi-
cation [6], [38], link prediction [39], and recommendation
systems [40]. Recently, several studies have applied GCN in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

———FedGraph ===== FastGCN GraphSAGE Full-batch
(a) Cora 08 (b) Citeseer
0.9
0.8 0.7

Accuracy
o o
[} ~
Accuracy
o
(2]

o
3

o

Time (s)
(c) PubMed

Time (s)

0 10 20 30 0 500
Time (s) Time (s)

1000

Fig. 12. Accuracy convergence of different sampling schemes on non-iid
data.

natural language processing tasks, like machine translation
[41] and relation classification [42]. In order to accelerate
GCN training, NeuGraph [43] has been proposed as a new
framework that supports efficient and scalable parallel neu-
ral network computation on graphs. NeuGraph can support
not only single GPU training, but also parallel processing on
multiple GPUs. Scardapane et al. [13] have proposed distrib-
uted GCN training based on message passing exchanges.
However, this work ignores privacy protection, which is nec-
essary for federated learning scenarios.

Graph sampling can effectively reduce GCN training
overhead. Hamilton et al. [12] have proposed GraphSAGE
that constructs a simplified GCN by sampling a subset of
neighboring nodes. However, GraphSAGE incurs redundant
computation at some nodes as common neighbors [25].
Although several works has been proposed to alleviate the
redundant computation by reducing the size of sampled
nodes, like VR-GCN [19] and Cluster-GCN [26], they still can
not well address this problem when training a very large and
deep GCN. To deal with this problem, layer-wise sampling
methods, like FastGCN [20] and LADIES [21], have been pro-
posed to sample the nodes for each layer independently,
instead of sampling neighbors for each node. This kind of
sampling method can efficiently reduce the computation
cost, but some sampled nodes may have no connection due
to independent sampling, which would degrade training
accuracy. In addition, all above sampling methods depend
on hand-crafted parameters that need manual tuning. The
weaknesses of existing work motivate the FedGraph design
with intelligent sampling in this paper.

7 CONCLUSION

In this paper, we propose FedGraph as a novel federated
graph system to enable privacy-preserving distributed
GCN learning. Different from traditional federated learning,
FedGraph is more challenging because GCN training pro-
cess involves embedding sharing among clients. To address
this challenge, FedGraph uses a novel cross-client graph

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

CHEN ETAL.: FEDGRAPH: FEDERATED GRAPH LEARNING WITH INTELLIGENT SAMPLING

convolution operation to compress the embeddings before
sharing, so that private information can be well hidden. In
addition, to reduce GCN training overhead, FedGraph
adopts a DRL-based sampling scheme that can well balance
the training speed and accuracy. Experimental results on a
20-client testbed show that FedGraph significantly outper-
forms existing schemes.

REFERENCES

(1

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. Artif. Intell. Statist. Conf., 2017, pp. 1273-1282.
Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated learning with non-iid data,” 2018, arXiv:1806.00582.
[Online]. Available: https:/ /arxiv.org/abs/1806.00582

J. Konec¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” in Proc. NIPS Workshop Private Multi-Party
Mach. Learn., 2016, pp. 1-10.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” Al
Open, vol. 1, pp. 57-81, 2020. [Online]. Available: https:/ /www.scien-
cedirect.com/science/article/ pii/S2666651021000012

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, Jan. 2021.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2017, pp. 1-14.

J. Zhou et al., “Privacy-preserving graph neural network for node
classification,” 2020, arXiv:2005.11903. [Online]. Available: https://
arxiv.org/abs/2005.11903

G. Mei, Z. Guo, S. Liu, and L. Pan, “SGNN: A graph neural net-
work based federated learning approach by hiding structure,” in
Proc. IEEE Int. Conf. Big Data, 2019, pp. 2560-2568.

C.Heet al., “Fedgraphnn: A federated learning system and bench-
mark for graph neural networks,” 2021, arXiv:2104.07145. [Online]
Available: https:/ /arxiv.org/abs/2104.07145

L. Zheng, J. Zhou, C. Chen, B. Wu, L. Wang, and B. Zhang,
“ASFGNN: Automated separated-federated graph neural
network.,” Peer-to-Peer Netw. Appl., pp. 1-13, 2021.

E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and]. Sun,
“GRAM: graph-based attention model for healthcare representa-
tion learning,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 787-795.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 1024-1034.

S. Scardapane, I. Spinelli, and P. Di Lorenzo , “Distributed graph
convolutional networks,” IEEE Trans. Signal Inf. Process. over
Netw., pp. 87-100, 2020.

The Top 20 Valuable Facebook Statistics — Updated August
947, 2020. Accessed: Nov. 20, 2021. [Online]. Available: https://
zephoria.com/top-15-valuable-facebook-statistics /

C.Zhang, S. Li,]. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt: Effi-
cient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf., 2020, pp. 493-506.

L.T. Phong, Y. Aono, T. Hayashi, L. Wang, S. Moriai, “Privacy-pre-
serving deep learning via additively homomorphic encryption,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1333-1345,
May 2018.

X. Zhang, F. Li, Z. Zhang, Q. Li, C. Wang, and J. Wu, “Enabling
execution assurance of federated learning at untrusted partic-
ipants,” in Proc. Int. Conf. Comput. Commun., 2020, pp- 1877-1886.
T. Lee et al., “Occlumency: Privacy-preserving remote deep-
learning inference using SGX,” in Proc. 25th Annu. Int. Conf. Mobile
Comput. Netw., 2019, pp. 1-17.

J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convo-
lutional networks with variance reduction,” in Proc. Int. Conf.
Mach. Learn., Stockholm, Sweden, 2018, pp. 942-950.

J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in Proc. Int.
Conf. Learn. Representations, 2018, pp. 1-15.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

1785

D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-
dependent importance sampling for training deep and large
graph convolutional networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 11249-11259.

J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtarik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527. [Online]. Available:
http:/ /arxiv.org/abs/1610.02527

N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model
design and analysis,” in Proc. Int. Conf. Comput. Commun., 2019,
pp. 1387-1395.

H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-IID data with reinforcement learning,” in Proc.
Int. Conf. Comput. Commun., 2020, pp. 1698-1707.

W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling
towards fast graph representation learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 4558-4567.

W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-GCN: An efficient algorithm for training deep and large
graph convolutional networks,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2019, pp. 257-266.

K. Bonawitz et al.“Practical secure aggregation for privacy-pre-
serving machine learning,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 1175-1191.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp- 1310-1321.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. 4th Int. Conf. Learn. Representations, 2016.
[Online]. Available: http:/ /arxiv.org/abs/1509.02971

S. Wold, K. Esbensen, and P. Geladi, “Principal component analy-
sis,” Chemometrics Intell. Lab. Syst., vol. 2, no. 1-3, pp. 37-52, 1987.
Deep Graph Library. Accessed: Nov. 20, 2021. [Online]. Available:
https:/ /www.dgl.ai/

Z.Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “DGCL: An effi-
cient communication library for distributed GNN training,” in
Proc. ACM 16th Eur. Conf. Comput. Syst.,, New York, NY, USA,
2021, pp. 130-144.

Fabian Pedregosa et al., “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.

M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep
graph convolutional networks,” in Proc. 37th Int. Conf. Mach.
Learn., 2020, pp. 1725-1735.

Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep
graph convolutional networks on node classification,” in Proc. 8th
Int. Conf. Learn. Representations, vol. 33, 2020, pp. 1-17. [Online].
Available: https:/ /openreview.net/ forum?id=Hkx1qkrKPr

T. Suzumura et al., “Towards federated graph learning for collabora-
tive financial crimes detection,” in Proc. NeurIPS Workshop Robust Al
Financial Services: Data, Fairness, Explainability, Trustworthiness, Pri-
vacy, 2019. [Online]. Available: https:/ /arxiv.org/abs/1909.12946
M. Jiang, T. Jung, R. Karl, and T. Zhao, “Federated dynamic gnn
with secure aggregation,” 2020, arXiv:2009.07351. [Online]. Avail-
able:https:/ /arxiv.org/abs/2009.0735

X.Liu, Z. Tang, P. Li, S. Guo, X. Fan, and J. Zhang, “A graph learn-
ing based approach for identity inference in dapp platform block-
chain,” IEEE Trans. Emerging Top. Comput., early access, Sep. 29,
2020, doi: 10.1109/TETC.2020.3027309.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in
Proc. NIPS Workshop Bayesian Deep Learn., 2016, pp. 1-3. [Online].
Available:https:/ /arxiv.org/abs/1611.07308

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and]. Leskovec, “Graph convolutional neural networks for
web-scale recommender systems,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 974-983.

J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph
convolutional encoders for syntax-aware neural machine translation,”
in Proc. Conf. Empirical Methods Nat. Lang. Process., 2017, pp. 1957-1967.
[Online]. Available: https:/ /www.aclweb.org/anthology/D17-1209
Y. Li, R. Jin, and Y. Luo, “Classifying relations in clinical narra-
tives using segment graph convolutional and recurrent neural net-
works (SEG-GCRNS),” J. Amer. Med. Inform. Assoc., vol. 26, no. 3,
pp- 262-268, 2019.

L. Ma et al., “Neugraph: Parallel deep neural network computa-
tion on large graphs,” in Proc. USENIX Annu. Tech. Conf., Renton,
WA, USA, 2019, pp. 443-458.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TETC.2020.3027309

1786

Fahao Chen is currently working toward the PhD
degree with the Graduate School of Computer
Science and Engineering, The University of Aizu,
Japan. His research interests include cloud or
edge computing and distributed machine learning
systems.

Peng Li (Senior Member, IEEE) received the BS
degree from the Huazhong University of Science
and Technology, China, in 2007, and the MS and
PhD degrees from The University of Aizu, Japan,
in 2009 and 2012, respectively. He is currently an
associate professor with The University of Aizu,
Japan. He has authored or coauthored more than

100 technical papers on prestigious journals and

conferences. His research interests include cloud
& or edge computing, Internet-of-Things, machine

learning systems, and related wired and wireless
networking problems. He is the editor of /EICE Transactions on Commu-
nications and IEEE Open Journal of the Computer Society. He was the
recipient of the Young Author Award of IEEE Computer Society Japan
Chapter in 2014, the Best Paper Award of IEEE TrustCom 2016, and he
supervised students to win the First Prize of IEEE ComSoc Student
Competition in 2016.

Toshiaki Miyazaki (Senior Member, |EEE)
received the BE and ME degrees in applied elec-
tronic engineering from the University of Electro-
Communications, Tokyo, Japan, in 1981 and 1983,
respectively, and the PhD degree in electronic engi-
neering from the Tokyo Institute of Technology in
1994. He is currently a professor with The Univer-
sity of Aizu, Fukushima, Japan, and the dean of the
Undergraduate School of Computer Science and
Engineering. He was with NTT for 22 years
engaged in research on VLS| CAD systems, tele-
communications-oriented FPGAs and their applications, active networks,
peer-to-peer communications, and ubiquitous network environments. He
was a visiting professor with Graduate School, Niigata University in 2004
and a part-time lecturer with the Tokyo University of Agriculture and Tech-
nology from 2003 to 2007. His research interests include reconfigurable
hardware systems, adaptive networking technologies, and autonomous
systems. He is a member of IEICE and IPSJ.

LB

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Celimuge Wu (Senior Member, IEEE) received the
ME degree from the Beijing Institute of Technology,
China, in 2006 and the PhD degree from The Uni-
versity of Electro-Communications, Japan, in 2010.
He is currently an associate professor with the
Graduate School of Informatics and Engineering,
The University of Electro-Communications. His
research interests include vehicular networks,
edge computing, loT, intelligent transport systems,
and application of machine learning in wireless net-
working and computing. He is currently an associ-
ate editor for IEEE Open Journal of the Computer Society, IEEE
Transactions on Network Science and Engineering, IEEE Transactions on
Green Communications and Networking, and IEEE Access. He is the chair
of IEEE TCGCC Special Interest Group on Green Internet of Vehicles and
IEEE TCBD Special Interest Group on Big Data with Computational Intelli-
gence. He was the recipient of the IEEE Computer Society 2019 Best
Paper Award Runner-Up.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 17,2024 at 10:10:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

